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Functional biomolecules, such as RNA, encapsulated inside a proto-
cellular membrane are believed to have comprised a very early,
critical stage in the evolution of life, since membrane vesicles allow
selective permeability and create a unit of selection enabling coop-
erative phenotypes. The biophysical environment inside a protocell
would differ fundamentally from bulk solution due to the micro-
scopic confinement. However, the effect of the encapsulated envi-
ronment on ribozyme evolution has not been previously studied
experimentally. Here, we examine the effect of encapsulation inside
model protocells on the self-aminoacylation activity of tens of thou-
sands of RNA sequences using a high-throughput sequencing assay.
We find that encapsulation of these ribozymes generally increases
their activity, giving encapsulated sequences an advantage over non-
encapsulated sequences in an amphiphile-rich environment. In addi-
tion, highly active ribozymes benefit disproportionately more from
encapsulation. The asymmetry in fitness gain broadens the distribu-
tion of fitness in the system. Consistent with Fisher’s fundamental
theorem of natural selection, encapsulation therefore leads to
faster adaptation when the RNAs are encapsulated inside a pro-
tocell during in vitro selection. Thus, protocells would not only
provide a compartmentalization function but also promote activity
and evolutionary adaptation during the origin of life.

protocell | ribozyme | in vitro evolution

RNA is believed to have been a central constituent of early life
(1–3). In the “RNA world” theory, functional RNAs (e.g.,

ribozymes) would both perform catalytic functions and store and
transfer genetic information in a simple living system (4–6). En-
capsulation of ribozymes in cell-like compartments, such as pro-
tocells, is thought to be an essential feature for the emergence of
early life (7–11). In particular, compartmentalization would retain
useful metabolites in the vicinity (12) and prevent a cooperative,
self-replicating ribozyme system from collapsing under parasitiza-
tion by selfish RNAs (13, 14). A major model of protocells is lipid
vesicles, which consist of an aqueous interior surrounded by a
semipermeable membrane (15, 16). However, while the ultimate
advantages of compartmentalization may be clear, how encapsu-
lation and confinement inside protocell vesicles would affect the
activity and early evolution of ribozymes is not understood well.
Confinement by lipid membranes presents a biophysical en-

vironment similar to macromolecular crowding (17). The effect
of macromolecular crowding on the activity, function, and speci-
ficity of biomolecules (i.e., proteins and nucleic acids) has been
examined extensively (18–23) using crowding agents such as dex-
tran, polyethylene glycol, and Ficoll in vitro (24–29). In general,
macromolecular crowding agents decrease the accessible volume
for biomolecules, leading to the excluded-volume effect, in which
the relative stability of compacted and folded structures is increased
(30, 31). At the same time, chemical interactions between the
crowding agents and the biomolecule can also stabilize or destabi-
lize the folded structure, influencing catalytic activity (24, 32). While
chemical interactions depend on the properties of the specific
molecules under study, the excluded-volume effect resulting from
spatial confinement inside vesicles is expected to be general. The

effect of confinement can be studied while controlling for chemical
interactions by comparing the encapsulated condition to the non-
encapsulated but membrane-exposed condition. This comparison
represents the prebiotic scenario in which RNAs would be present
in the same milieu as lipids (33) and may become encapsulated or
not. In this way, confinement inside vesicles was shown to increase
the binding affinity of the malachite green RNA aptamer (34).
Interestingly, spatial confinement inside a tetrahedral DNA
framework has also been shown to increase thermodynamic sta-
bility and binding affinity of aptamers by facilitating folding (35).
While these and other case studies (17, 25, 36–43) illustrate

mechanisms by which RNA activity might be perturbed inside
vesicles, understanding how encapsulation would affect evolution
requires a broader scale of information. In particular, detailed
knowledge of how encapsulation affects the sequence-activity re-
lationship is required. This information is captured in the “fitness
landscape,” or the function of fitness over sequence space, which
embodies many important evolutionary features [e.g., fitness max-
ima, epistasis, and the viability of evolutionary trajectories (44–47)].
In practice, the fitness of a ribozyme can be considered to be its
chemical activity for a particular function in the given environment
(48–53).
In the present work, we investigated how encapsulation inside

model protocells would affect the catalytic activity and evolution
of self-aminoacylating ribozymes. We studied tens of thousands
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of RNA sequences derived from five previously selected self-
aminoacylating ribozyme families (53). These sequences were
encapsulated in a mixed fatty acid/phospholipid vesicle system.
Fatty acids mixed with phospholipids (1:1 molar ratio) have been
used as model protocell membranes, as the vesicles tolerate
Mg2+ concentrations needed for ribozyme activity and the mem-
brane allows small, charged molecules to permeate while preserving
large polynucleotides in the vesicle interior (54, 55). To study the
biophysical effect of confinement rather than chemical interactions
with the membrane, RNA activity inside vesicles was compared with
RNA activity when exposed to the same vesicles without encapsu-
lation. We show that ribozymes generally exhibit higher catalytic
activity inside the vesicles and that more active sequences experi-
ence greater benefit. Using in vitro selection, we demonstrate that
one of the evolutionary consequences of this trend is that encap-
sulation inside vesicles causes a greater rate of genotypic change
due to natural selection.

Results
Encapsulation of Self-Aminoacylating Ribozymes in Model Protocells.
We examined whether the model protocells would be compatible
with the self-aminoacylating ribozyme reaction in terms of sub-
strate permeability and vesicle stability. Ribozyme S-1A.1-a, pre-
viously identified from in vitro selection (53), was synthesized and
used as a model ribozyme for the following tests. To test the ability
of the substrate, biotinyl-Tyr(Me)-oxazolone (BYO), to permeate
the membrane, S-1A.1-a was encapsulated in vesicles composed of
oleic acid (OA)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) in a 1:1 mixture and then incubated with different con-
centrations of BYO added externally. Formation of the encapsu-
lated product, aminoacyl-RNA (i.e., aa-RNA), was monitored by a
gel shift assay in the presence of streptavidin, which binds to the
biotinylated product (Fig. 1A and SI Appendix, Fig. S1A). The
yield of aa-RNA increased with increasing BYO concentration,
suggesting that the model protocells exhibit the required perme-
ability to allow entry of BYO while retaining RNAs inside the

Fig. 1. Experimental scheme and verification of activity for self-aminoacylating ribozymes in the OA/POPC (1:1) vesicle system. (A) Experimental design of the
RNA libraries. The synthetic DNA templates are composed of the T7 transcription promoter sequence, 5′-TAATACGACTCACTATA-3′ (red) and a 21-nt variable
region (blue) flanked by constant regions (black). For the doped pool DNA library of each ribozyme family, partial randomness is introduced at the 21-nt
variable region during DNA synthesis. Self-aminoacylation of RNA was carried out by incubating the RNA pool with BYO. The aa-RNA carries a biotin tag for
downstream purification and assays. (B) The activity of wild-type ribozyme S2a was determined in the InV (blue) and OutV (red) conditions using RT-qPCR. The
fraction of aa-RNA increases as [BYO] increases, consistent with permeability of the vesicles to the BYO substrate and retention of RNA in the vesicles.
Ribozyme rates were obtained by fitting to a pseudo-first-order rate equation. (C) Schematic workflow of the k-Seq assay, inside vesicles (InV) and outside
vesicles (OutV). The reacted ribozymes are represented by stars (f = fraction reacted). For the InV condition, ribozymes were encapsulated in OA/POPC vesicles
and reacted with BYO substrate, which permeated the membrane to react with the encapsulated ribozyme. For the OutV condition, ribozymes were in-
cubated with BYO substrate in a solution containing empty OA/POPC vesicles (85 mM; SI Appendix, Fig. S1C).
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vesicle. The stability of the vesicles in the reaction was examined
by monitoring the size distribution. Dynamic light scattering (SI
Appendix, Fig. S1B) showed that the vesicles were stable under
the tested conditions. The size distribution of vesicles was con-
sistently centered at ∼100 nm in various conditions, and the dis-
tribution was significantly left shifted when the vesicles were
disrupted by the addition of excess Triton X-100 detergent (SI
Appendix, Fig. S1B). Vesicles with encapsulated RNA presented a
more-polydisperse population, likely resulting from the centrifu-
gation used to concentrate the vesicles after purification. To check
for leakage of RNA from the vesicles after centrifugation, the
RNA concentration of the buffer was measured using a Qubit 3.0
fluorometer. The RNA concentration was lower than the detec-
tion limit (i.e., <250 pg/μL), indicating no significant leakage of
RNA. Overall, the results verified that the blended OA/POPC
(1:1) vesicle system could provide the required stability and per-
meability for ribozyme activity under encapsulation.

Kinetic Sequencing Activity Assay of Ribozyme Libraries: Encapsulated
versus Nonencapsulated. DNA libraries based on five ribozyme se-
quences (“doped” libraries), which comprise three previously
identified catalytic motifs (53), were synthesized (Fig. 1A). In this
study, two Motif 1 sequences (S-1A.1-a and S-1B.1-a), two Motif 2
sequences (S-2.1-a and S-2.2-a), and one Motif 3 sequence (S-3.1-
a) were used as the bases of the libraries (sequences abbreviated
here as S1a, S1b, S2a, S2b, and S3, respectively; sequences given in
Materials and Methods). Each synthesized DNA sequence con-
tained a T7 promoter sequence as well as a central variable region
of 21 nt flanked by two constant regions. The doped DNA libraries
contained random variation at a level of 9% at each site in the
central region (i.e., 91% frequency of the wild-type nucleotide and
3% frequency of each of the other three nucleotides); thus, the
DNA pool was composed of five families of sequences, with each
family centered on one of five known ribozyme sequences (“wild
types”). Notably, the Hamming distance between any two wild-
type ribozymes was >12, so there was no practical ambiguity in the
assignment of a sequence to its ribozyme family. The libraries were
transcribed and purified to produce RNA and either encapsulated
inside OA/POPC vesicles (i.e., InV condition) or merely exposed
to vesicles without encapsulation (i.e., OutV condition) (Fig. 1C).
To measure the activity of the ribozymes, we performed ki-

netic sequencing (k-Seq), a massively parallel assay for measur-
ing the activity of many different ribozyme sequences in a mixed
pool (Fig. 1C). For all analyzable sequences s, the reaction rate
constant (ks) and the maximum reaction amplitude (As) were
estimated from fitting to a pseudo-first-order kinetic equation
(53). For low-activity sequences (ks < ∼0.5 min−1 · M−1), ks and As
could not be accurately estimated individually with the substrate
concentration range used because the activity curve did not plateau
at high substrate concentrations, but the product ksAs could be
robustly estimated due to the inverse correlation between ks and As
during curve fitting (56). Therefore, the product ksAs, corresponding
to a possible prebiotic scenario of relatively low substrate concen-
tration, was used to represent the activity of each ribozyme for all
analyzable sequences.
The high-throughput sequencing (HTS) results yielded

1,399,829 and 1,073,520 sequence reads for the encapsulated and
nonencapsulated conditions, respectively. Sequences in both condi-
tions having very low count (i.e., an average of <10 reads per sam-
ple) were removed from the analysis due to the large measurement
noise associated with small numbers (56). Hence, 81,065 (i.e., 81,060
mutants plus 5 wild-type sequences) and 59,665 (i.e., 59,660 mutants
plus 5 wild-type sequences) unique sequences in the encapsulated
and nonencapsulated conditions, respectively, were considered to be
analyzable by the aforementioned fitting process. The set of ana-
lyzable sequences included all single, all double, and some triple
mutants of the five ribozyme family centers (SI Appendix, Table S1).

For the following analysis, we focus on the 50,205 (i.e., 50,200
mutants plus 5 wild-type sequences) sequences that were ana-
lyzed in both encapsulated and nonencapsulated conditions.

Ribozymes Generally Exhibit Higher Activity when Encapsulated
Compared to Nonencapsulated. A comparison of the activity distri-
butions of the 50,205 sequences showed a rightward shift for the
encapsulated RNAs compared to the nonencapsulated RNAs,
indicating generally greater activity inside vesicles (Fig. 2A, Inset).
This shift was more pronounced when examining the subset of
sequences having average counts >100 in the HTS sample (6,711
ribozymes; Fig. 2A), which represents ribozymes with greater
activity and less measurement noise. The change in distribution
shape, namely a rightward skew, suggested that encapsulation was
particularly favorable for ribozymes having higher activity. The
activity of ribozyme S2a was measured in the encapsulated con-
dition (InV) and nonencapsulated condition (OutV) using RT-
qPCR to quantify the reaction products (Fig. 1B). Higher activ-
ity was observed in the InV condition (kA = 43 ± 12 min−1 · M−1)
than in the OutV condition (kA = 16 ± 4 min−1 ·M−1), supporting
the general trend.
To determine whether the trend of greater activity inside

vesicles was similar across different ribozyme families, the se-
quences were classified into the five different families if the se-
quences were within a Hamming distance of ≤3 from the family
wild types (S1a, S1b, S2a, S2b, and S3). The trend toward higher
activity inside vesicles can be seen for all families (Fig. 2B and SI
Appendix, Fig. S2), although ribozymes of the S1a and S1b fam-
ilies showed a less-pronounced effect compared to the S2a, S2b,
and S3 families (SI Appendix, Fig. S2 and Text S1). Thus, Motif 1
ribozymes appeared to be less sensitive to the encapsulation
effect compared to Motifs 2 and 3.
One may ask whether the general enhancement of activity

could be due to a change in the reaction mechanism when encap-
sulated. If this were the case, one would expect that the pattern of
mutational effects (i.e., how deleterious or beneficial each mutation
is) would differ between the encapsulated versus nonencapsulated

Fig. 2. Catalytic activities of five self-aminoacylating ribozyme families
when encapsulated (InV) versus nonencapsulated (OutV), measured by the
k-Seq assay. (A) A rightward shift in the distribution of catalytic activity,
log10(ksAs), is observed when RNAs are InV (red) compared to OutV (black).
The data are shown for sequences have >100 counts per HTS sample on
average, as well as for all analyzable sequences (Inset). (B) Comparison of the
encapsulation effect among different ribozyme families. The activity values
[log10(ksAs)] of each RNA sequence when InV versus OutV indicate that all
families exhibit higher activity when encapsulated, as seen by the predom-
inance of points above the line of identity (dotted black line). S2a (blue), S2b
(cyan), and S3 (green) families show a greater effect than S1a (red) and S1b
(yellow). The correlation coefficients for linear regression (using all analyz-
able sequences) are as follows: r2 = 0.9546, 0.9401, 0.7558, 0.5705, and
0.8593) for families S1a, S1b, S2a, S2b, and S3, respectively. The sequences
with >100 average counts are shown, with all analyzable sequences shown
in the inset. The ribozyme families are plotted separately in SI Appendix,
Fig. S2.
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environments. We compared how each possible single mutant of
the five ribozyme families (i.e., 63 mutants per family) affected
ksAs for the encapsulated (Fig. 3A) versus nonencapsulated (Fig. 3B)
conditions. All single mutations, regardless of the ribozyme family or
the studied condition, were either neutral or deleterious to catalytic
activity compared to the wild-type sequence of the family. For all
families, mutations near the middle of the sequence tended to
severely reduce activity. The patterns of mutational effects were
qualitatively similar between the two conditions for all ribozyme
families. These results, combined with the high correlation ob-
served between activities when encapsulated versus nonencap-
sulated (Fig. 2B), suggested that no major change to the reaction
mechanism was caused by encapsulation.

Mutations Generally Have Stronger Effects when Ribozymes Are
Encapsulated. To quantify the mutational effects and how en-
capsulation affected them, we assessed each mutation within the
central 21-nt region of five ribozyme families in both encapsulated

and nonencapsulated conditions. A multilinear regression model
was fit to the activities of ribozymes in the same family, incorpo-
rating k-Seq data of single and double mutants (SI Appendix, Fig.
S4). This model makes the simplifying assumption that the activity
of a given sequence is a linear combination of the wild-type activity
and the effect of each mutation that is present (63 possible sub-
stitutions for a 21-nt region, disregarding genetic background).
The coefficient βi,j represents the mutational effect of nucleotide i
(i = A, T, C, and G) at locus j. Hence, for each ribozyme family,
63 βi,j parameters are obtained from fitting to this model for each
condition (encapsulated and nonencapsulated). All fitted βi,j values
were negative or indistinguishable from zero in both conditions
(Fig. 4), indicating deleterious or neutral effects from the mutations,
consistent with the observations of single mutants (Fig. 3 A and B).
The βi,j values of S1a and S1b families aligned well to the identity
line, supporting the suggestion above that Motif 1 is relatively in-
sensitive to encapsulation (Fig. 4A). However, for S2a, S2b, and S3
families, the βi,j values are more negative in the encapsulated

Fig. 3. The pattern of mutational effects on ribozyme activity (ksAs) for single mutants is similar for the encapsulated (A) and nonencapsulated (B) conditions.
The sequence of the central 21-nt region for the wild-type family center is displayed on the x-axis. The ratio of average activity of three single mutants
(kAavg

mutants) and wild-type ribozyme (kAWT) is indicated by the heat map along the RNA sequence, with cyan and magenta representing deleterious and neutral
substitutions, respectively. Each dot shows the activity of a single-point mutant at the given position in the variable region, with dot color illustrating the
nucleotide identity at the position (A: red, U: blue, C: green, and G: orange). The activity of the wild type is shown by the black dashed line. The error bars
correspond to the 95% CI of the activity measurement from bootstrap analysis of k-Seq data. The activity ratio between the encapsulated and nonencap-
sulated conditions for each single mutant is shown in SI Appendix, Fig. S3. (C) k-Seqlogo representation illustrating the importance of each nucleotide in the
central 21-nt region for the catalytic activity of five ribozyme families. The information content at each position is shown for the InV (open circles) and the
OutV (solid line). The stacked letters in the figure are given for the encapsulated condition. It can be seen that higher information content corresponds to
greater mutational effects (A and B), and greater information is seen with encapsulation for some families (S2a, S2b, and S3).
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condition, indicating that mutations are more deleterious to
catalytic activity when the RNAs are encapsulated compared to
nonencapsulated (Fig. 4 B and C and SI Appendix, Fig. S5). For
these families, encapsulation inside vesicles would present a more-
stringent selection environment among mutants despite the gener-
ally higher level of activity compared to the nonencapsulated
environment.
To visualize the information content of the ribozyme sequences

with respect to activity, we constructed a modified “sequence logo”
representation of each ribozyme family based on the mutational
effects β. We term this a “k-Seqlogo” representation, in analogy to
Seqlogo, which is calculated based on a position weight matrix.
Like Seqlogo, a k-Seqlogo shows the relative frequency of each
nucleotide at each position and an information content (measured
in bits) of each position, which is summed from the information
content of the four nucleotides at each position. However, in
k-Seqlogo, information content corresponds to the importance of
the nucleotide for activity (rather than conservation) in the given
ribozyme family. Greater information content indicates less toler-
ance to mutations with respect to activity. As shown in Fig. 3C, the
tallest letter at each position corresponded to the nucleotide of the
wild type at the position, as expected since the wild type is the
highest-activity sequence of the family.
Encapsulation increased the information content of the ribo-

zymes of Motifs 2 and 3, as seen by comparison of the k-Seqlogos
for encapsulated versus nonencapsulated conditions (Fig. 3C).
However, for families of Motif 1, encapsulation did not appear to
affect information content, consistent with the observation that
encapsulation had little effect on mutational effects β for Motif
1. Combined with the overall effect of encapsulation increasing
the magnitude of β-values (Fig. 4), this analysis confirms that for
Motifs 2 and 3, encapsulation would create greater activity dif-
ferences among sequences. These observations lead to the pre-
diction, according to Fisher’s fundamental theorem of natural
selection (57–59), that encapsulation should increase the rate of
natural selection.

The Encapsulated Environment Leads to Greater Evolutionary Rate
among Ribozyme Sequences. During in vitro selection, sequence
diversity is initially very high due to the large number of sequences
present in a complex pool, and selective pressures decrease the
diversity as functional sequences emerge. A similar situation can be
presumed to hold under prebiotic conditions, in which the chemical
repertoire might initially contain a large diversity of sequences. The
greater mutational effects seen in the encapsulated environment
should correspond to greater fitness differences, which should
accelerate evolution (i.e., faster change in relative genotype

frequencies). During an in vitro selection experiment, this should
be observable as a faster reduction of sequence diversity.
To test this prediction, we conducted in vitro selection of RNA

from random sequence pools for both conditions (selection of
RNA inside vesicles versus selection of RNA exposed to vesicles
but nonencapsulated). For both conditions, the selection exper-
iments were performed by incubating the RNA pools with the
same concentration of BYO (i.e., 50 μM) for the same reaction
time (90 min) throughout the entire selection process (four and
five rounds of selection for the encapsulated and the nonencap-
sulated conditions, respectively). To assess diversity, sequences
within a Hamming distance of three from the wild-type family
centers were categorized into each of the five ribozyme families.
S1b and S2b families were excluded from the diversity analysis
since only the wild types from these families were observed after
selection. Intrafamily diversity was roughly assessed by the fraction
of mutant sequences (i.e., fm =1 − fwt, where fwt is the fraction of
wild type in the family). The mutant fractions of all families from
the encapsulated selection were lower than those in the nonen-
capsulated selection, suggesting that the encapsulated environ-
ment resulted in reduced diversity (SI Appendix, Table S2). The
reductions in mutant fraction in encapsulated compared to non-
encapsulated conditions were larger for S2a and S3 than S1a,
consistent with the overall finding that ribozymes of Motifs 2 and 3
were more sensitive to the encapsulation environment compared
to Motif 1.
The rate of evolution broadly corresponds to the rate at which

advantageous traits become fixed in the population. This rate can
be measured either by phenotypic change or genotypic change.
For in vitro evolution, the phenotypic activity of the entire pool as
it progresses through the selection can be estimated by the extent
of product formation, measured from the number of PCR cycles
needed to amplify the recovered RNA (60–62) (SI Appendix, Fig.
S6). These measurements showed that pool activity increased
more quickly in the encapsulated selection. In addition, the rate of
genotypic change could be assessed by the rate at which the pool
converged to a small number of ribozymes, as determined from
the HTS data. In both selections, the pool largely converged to
S1a and S2a. These ribozymes became dominant (comprising >50%
of the pool) earlier when encapsulated (Round 3) than in the
nonencapsulated selection (Round 4), confirming that the rate of
genotypic change was faster when the RNAs were encapsulated (SI
Appendix, Fig. S7).
We further quantified the overall rate of evolutionary con-

vergence for the encapsulated and nonencapsulated conditions
by monitoring the Gini-Simpson index of diversity (Ds) at different
rounds of selection (Fig. 5). The Ds value is equal to the proba-
bility that two randomly selected sequences are different. The

Fig. 4. The mutational effect coefficients in the encapsulated (βInV , y-axis) and nonencapsulated (βOutV , x-axis) conditions, obtained from fitting k-Seq data to
the multilinear regression model, shown for (A) Motif 1 families (S1a [red] and S1b [yellow]), (B) Motif 2 families (S2a [blue] and S2b [cyan]), and (C) the Motif
3 family (S3 [green]). The dotted black line indicates the identity line. The error bars show the 95% CI for the coefficient.

Lai et al. PNAS | 5 of 11
Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation https://doi.org/10.1073/pnas.2025054118

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025054118/-/DCSupplemental
https://doi.org/10.1073/pnas.2025054118


www.manaraa.com

Gini–Simpson index (Ds), which varies from 0 to 1, is calculated
as Ds = 1 −∑

i
p2i , where pi represents the proportional abun-

dance of sequence i in the sequencing results. This index is rel-
atively robust to sample size and sequencing depth as it gives
more weight to dominant sequences; hence, it is less affected by
sequences with very low reads in the HTS results. In both conditions,
Ds dropped substantially at the later selection rounds, as expected
due to in vitro selection. Notably, Ds began to drop precipitously
after Round 2 during the encapsulated selection, but a similar drop
was observed later, at Round 4, for the nonencapsulated selection.
The earlier drop in diversity index in the encapsulated condition
indicated faster convergence and thus higher evolutionary rate in the
encapsulated environment.

Encapsulation Leads to Increased Epistatic Interactions and Greater
Ruggedness of the Local Fitness Landscape. While the linear re-
gression model described above neglected interactions between
mutations, or epistasis, these are important characteristics of the
fitness landscape. Greater epistasis reflects greater ruggedness
on the fitness landscape and thus a greater possibility of a ribozyme
being “trapped” in a local, rather than global, fitness optimum
during natural selection. To understand how encapsulation impacts
the local evolutionary landscape of each ribozyme family, we
measured epistasis as the difference between the observed fitness
of a combination of mutations and the fitness expected from simple
addition of the effects of the individual mutations. Pairwise epis-
tasis («) was calculated for the studied ribozyme families in the
encapsulated and nonencapsulated conditions. Overall, about 70%
of combinations were characterized by the double mutant exhib-
iting a different magnitude of effect compared to the additive ex-
pectation but in the same direction (i.e., magnitude epistasis, in
which the combination of two deleterious mutations still produces
a deleterious double-mutant phenotype) (SI Appendix, Figs. S8
and S9). In the remaining 30% of combinations, the double
mutant exhibited a fitness effect in the opposite direction from
one single mutant (sign epistasis, 25%) or both single mutants
(reciprocal sign epistasis, 5%). Sign epistasis essentially blocks an
evolutionary pathway through one mutant by creating a low-fitness
intermediate, and reciprocal sign epistasis blocks both pathways for
evolution, preventing evolutionary access of the wild type from the
double mutant through single mutations. Comparison of epistasis
categorization in the encapsulated and nonencapsulated conditions
showed no substantial difference in the distribution of epistasis

among the three categories of interactions (SI Appendix, Figs. S8
and S9).
Considering epistasis quantitatively, the majority of combina-

tions show positive epistasis (« > 0) in both encapsulated and
nonencapsulated conditions, indicating that the activity of the
double mutant is higher than expected from adding effects of the
two single mutations. These interactions often result from combi-
nations of single mutations that substantially reduce catalytic ac-
tivity, so an additional deleterious mutation seems to have relatively
little effect on the already substantially reduced activity (i.e., a sat-
uration effect) (51, 63). To understand the quantitative effect of
encapsulation, we compared epistasis values for the encapsulated
(«InV) and the nonencapsulated («OutV) conditions (Fig. 6A). In
general, «InV and «OutV are well correlated. However, deviations
from the identity line become clear at the higher end, with greater
epistasis in the encapsulated condition compared to the nonen-
capsulated condition (Fig. 6B and SI Appendix, Table S3).
To understand the landscape beyond double mutants of the

central sequence, we also quantified landscape ruggedness by
calculating the so-called epistatic correlation, the average cor-
relation of activity effects of single mutations between sequences
at Hamming distance d of each other (γd, Materials and Meth-
ods). Higher γd indicates a smoother fitness landscape, while low
γd indicates a less-correlated, more-rugged landscape. As expected,
γd gradually decreased as d increased, illustrating that the activities
of more-distant sequences are less correlated for all studied ribo-
zyme families in both conditions (Fig. 6C and SI Appendix, Fig.
S10). For all ribozyme families, the γd values are smaller in the
encapsulated condition than the nonencapsulated condition, indi-
cating a less-correlated, more-rugged landscape for the ribozyme
fitness peak when encapsulated (Fig. 6C and SI Appendix, Fig. S10).
The decay curves can be matched to a model fitness landscape

in order to gain an intuitive appreciation for the degree of rug-
gedness. The observed pattern of γd resembles that seen in the NK
model, a well-known theoretical model for a fitness landscape with
tunable ruggedness (47, 64, 65). In this model, K is the number of
sites that interact with one another and N is the total number of
sites. A visual match of decay curves with varying K (N = 21) sug-
gests that the effect of encapsulation is analogous to the increase in
ruggedness caused by increasing K by ∼1 to 2 (Fig. 6C and SI Ap-
pendix, Fig. S10).

Discussion
The encapsulation of ribozymes inside vesicles is an important
scenario in prebiotic evolution (10–12, 66, 67). Prior studies on
isolated RNA sequences have pointed toward the possibility that
encapsulation and related biophysical effects could increase
ribozyme and aptamer activity (34, 35, 68), but the generality of
these findings has been unclear. In addition, while compartmen-
talization is known to be important for the evolution of cooperative
phenotypes (69–71), the evolutionary consequences of RNA en-
capsulation on noncooperative phenotypes have been largely un-
studied, despite being the subject of speculations (13, 72–74). Here,
we present a systematic study of the effect of encapsulation for five
different ribozyme families, previously derived from an exhaustive
search of sequence space for self-aminoacylating RNAs, repre-
senting three distinct ribozyme motifs and including tens of thou-
sands of different mutant sequences. This chemical activity, which
links amino acids to RNAs, could be critical precursor to the de-
velopment of a genetic code in an RNA world. Evolutionary
consequences of encapsulation for these ribozymes were further
probed experimentally by in vitro selection in a side-by-side com-
parison of encapsulated and nonencapsulated ribozymes reacted in
an amphiphile-rich environment.
The model protocells consisted of fatty acids, which are pre-

biotically plausible (66, 75, 76), and phospholipids, which are not
usually considered to be prebiotic molecules. However, this
composition has been used as a model system due to its tolerance

Fig. 5. Sequence diversity over selection rounds, quantified by the Gini–
Simpson index (Ds) during two different selections: encapsulated RNA (open
circles) and nonencapsulated RNA (crosses).
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of Mg2+ conditions necessary for ribozyme activity, and the ex-
perimental comparison between encapsulated and nonencapsu-
lated (but vesicle-exposed) RNA allowed a control for potential
chemical interactions with the membrane. In addition, prior work
on an RNA aptamer found that encapsulation in fatty acid vesicles
and POPC vesicles gave similar effects on RNA activity (34).
Exploration of different vesicle compositions mimicking proto-
cells, such as cyclic phospholipids (77), might be an avenue of
future interest.
Encapsulation was found to be generally beneficial to ribo-

zyme activity. Ribozyme activity is governed by inherent struc-
tural dynamics as well as the interchange among active and
inactive conformers (78–82). Studies of biophysical confinement
effects on RNA structure indicate that the conformational equi-
librium shifts toward relatively compacted structures in a confined
environment (e.g., crowded by macromolecules or encapsulated)
due to a greater reduction in configurational entropy for the un-
folded state relative to the folded state (the excluded-volume ef-
fect) (36, 37, 39). Assuming that the actively folded conformers
are relatively compact, the excluded-volume effect would increase
activity (39). At the same time, other mechanisms may affect the
enthalpy of reaction, such as the chemical interaction between the
membrane surface or crowding agent and the RNA (32, 83–89).
For instance, the activity of template-directed RNA polymeriza-
tion in coacervates was affected by the identity of polycations in
the system, likely due to extensive electrostatic interactions with
the RNAs (90). A hammerhead ribozyme exhibits a modestly re-
duced self-cleavage rate when encapsulated in fatty acid vesicles
compared to bulk solution environment (91), and the effect of
crowding agents on the malachite green aptamer depends greatly
on the identity of the agent (34). These examples illustrate the
potential importance of chemical interactions between the RNA
and other structures. Indeed, the activities of the self-aminoacylating
RNAs in this study, whether encapsulated or merely exposed to
vesicles, were generally lower than the activities measured in solution
lacking vesicles entirely (53). Such effects were controlled in the
present study, since ribozymes were exposed to the membrane sur-
face under both conditions, with the difference being only whether
the RNA was inside or outside of the vesicles (SI Appendix, Text S2).
This comparison mimics the prebiotic scenario of a lipid-containing

milieu, with some RNAs being encapsulated (e.g., by chance)
and others not. The experiments here probed an amphiphile-rich
environment, being above the critical aggregation concentration
and in a plateau regime in which the activity drop experienced by
nonencapsulated ribozymes appears to be saturated (SI Appen-
dix, Fig. S1C). Although not specifically tested at other amphi-
phile concentrations, the conclusions can be expected to hold
quantitatively in this plateau regime (e.g., >10 mM OA/POPC)
and may hold qualitatively for lower concentrations. In particu-
lar, as discussed below, the encapsulated selection exhibited
faster adaptation both when compared to an environment lack-
ing amphiphiles (53) as well as when compared to an environ-
ment rich in amphiphiles (as determined in the present work).
While encapsulation resulted in generally increased activities,

higher-activity ribozymes benefitted more from encapsulation
compared to less-active ribozymes. This asymmetry has interesting
evolutionary consequences. First, the variance of fitness among
genotypes would be greater for encapsulated ribozymes compared
to nonencapsulated ribozymes. According to Fisher’s fundamental
theorem of natural selection, the rate at which the average fitness
of the population increases during selection is proportional to the
variance of fitness (57–59, 92). This implies that encapsulation, by
conferring greater variance of fitness to the RNA population,
would lead to more-rapid evolutionary adaptation. Indeed, we
verified that evolutionary convergence to the most-active sequences
occurred more quickly when the RNAs were encapsulated during
in vitro selection compared to the nonencapsulated environment
(Fig. 5). In particular, the encapsulated selection proceeded one to
two rounds faster than the nonencapsulated selection. The encap-
sulated selection also proceeded two to three rounds faster than an
otherwise identical selection performed in bulk solution without
amphiphiles (53). Since this ribozyme selection requires a total of
only three to six rounds to reach a high level of convergence, the
differences indicate a substantial acceleration of adaptation.
Second, the amplification of fitness differences also effectively

decreases the correlation of fitness among related genotypes. For
all ribozyme families, most single mutants exhibited low activity
(Fig. 3 A and B), suggesting that the selected ribozymes are
generally fragile to mutations. Indeed, the mutational robustness
of naturally occurring RNAs appears to be higher than that of

Fig. 6. Effect of encapsulation on epistasis and ruggedness of the fitness landscape. (A) « in the encapsulated (y-axis, «InV) versus the nonencapsulated (x-axis,
«OutV) condition for all double mutants in the central 21-nt region (i.e., 1,890 double mutants), for each of the five ribozyme families as indicated by color. The
families are plotted separately in SI Appendix, Fig. S11. The dotted black line indicates the identity line. High correlations are observed, but «InV magnitudes
tend to be higher than «OutV magnitudes (SI Appendix, Table S3). (B) Bar chart showing the total fraction of double mutants exhibiting |«InV| > |«OutV| (blue) or
|«OutV| > |«InV| (red) when «OutV and «InV have the same sign, and the fraction for which «OutV and «InV have opposite sign (yellow). The total number of
sequences (n) within each group is indicated. The predominance of |«InV| > |«OutV| indicates greater epistasis when encapsulated. (C) Ruggedness (epistatic
correlation γd) of the fitness landscape as a function of hamming distance d for family S2a, illustrating lower correlation in the encapsulated (open circles)
versus nonencapsulated (crosses) condition. The gray dashed lines depict the theoretical γd dependence for the NK model landscape with N = 21 and K as
labeled in the plot.
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artificially selected functional RNAs, probably due to the rela-
tively controlled environment of in vitro selections (93–95). Since
encapsulation did not affect these low-activity mutants very much,
the enhancement of high-activity mutants effectively reduced the
fitness correlation and increased epistasis values. These effects
may be understood as quantitatively increasing the ruggedness of
the local fitness landscape. However, encapsulation did not sub-
stantially alter the amount of reciprocal sign epistasis. Thus, while
fitness clines might be steeper, encapsulation would not change
the number of local fitness maxima that serve as evolutionary
“traps” during natural selection.
Taken together, these results indicate that encapsulation sharp-

ens the divide among sequences, resulting in greater selection
pressure inside the vesicle and accelerated evolution. Although our
experiments did not directly probe the mutation–selection balance,
stronger selection would presumably lead to reduced diversity at
steady state under the encapsulated condition. By raising the
stringency of selection, confinement inside vesicles could hasten
the selection of active ribozymes inside protocells. In concert with
biophysical mechanisms causing positive feedback between vesicles
and encapsulated replicators (96–99), such a phenomenon may
contribute to a Matthew effect (100), accelerating evolution of an
active RNA world.

Materials and Methods
Materials. Unless otherwise specified, all chemicals used in this study were
from Sigma-Aldrich. POPC was obtained from Avanti Polar Lipids. OA (C18:1 cis-
9) was obtained from Nu-Chek Prep. All DNA libraries were chemically syn-
thesized and polyacrylamide gel electrophoresis (PAGE)-purified by Integrated
DNA Technologies. BYO was synthesized as previously described (53).

OA/POPC Vesicle Preparation. OA/POPC vesicles (1:1 molar ratio) were pre-
pared by mixing the amphiphiles in chloroform and drying in a glass tube
under vacuum for 12 h. The dried lipid films were first equilibrated with one
equivalent of KOH to OA. Then, the resuspension buffer was added (100 mM
HEPES, 100 mM NaCl, 100 mM KCl, pH = 7) to a final concentration of 85-mM
total amphiphiles and incubated overnight. Vesicles were extruded through
polycarbonate 100-nm pore size membranes (Whatman) with the aid of a
lipid extruder (Avanti Polar Lipids, #61000).

Preparation of Vesicle-Encapsulated RNA and RNA Exposed to Empty Vesicles.
To prepare vesicles encapsulating RNA, RNAs were added into the resuspension
buffer and incubated overnight with the dried lipid films, followed by extrusion
as above. The RNA amounts before the encapsulationwere 125, 200, and 100 μg
for the initial doped RNA pool, RNA pool for the first round of selection, and
RNA pools for the subsequent rounds of selection, respectively. After extrusion,
5 mM MgCl2 and 5 mM CaCl2 were added into the liposome solution and in-
cubated for 30 min. The RNA-containing vesicles were purified by a Sepharose
4B size exclusion column (Sigma-Aldrich), with the aminoacylation buffer
(100 mM HEPES [pH = 7], 100 mM NaCl, 100 mM KCl, 5 mM MgCl2, and 5 mM
CaCl2) as the mobile phase to remove unencapsulated RNAs. The purified RNA-
containing vesicles were concentrated by a 50-kDa molecular weight cutoff
Amicon Ultra-4 centrifugal filter unit (MilliporeSigma). The final RNA concen-
tration of samples before BYO incubation was 0.5 μM.

To prepare nonencapsulated RNA exposed to empty vesicles, 5 mM MgCl2
and 5 mM CaCl2 were added to the extruded liposome solution and then
equilibrated for 30 min, followed by the addition of RNA solution. The RNA
amounts added into the solution were 12.5, 200, and 20 μg for the initial
doped RNA pool, RNA pool for the first round of selection, and RNA pools
for the subsequent rounds of selection, respectively. The final RNA con-
centration of samples before the BYO incubation was 0.5 μM. The final
concentration of the OA/POPC mixture was 85-mM amphiphiles. When OutV
conditions were varied with different amphiphile concentrations, the am-
phiphile concentration of the stock solution was 112.5 mM before dilutions.

RT-qPCR Assay and Gel Shift Assay. For the RT-qPCR assay, InV and OutV samples
were incubated for 90 min with various BYO substrate concentrations (10, 50,
100, 250, 500, and 1,000 μM) in the aminoacylation buffer. The reactions were
stopped by removing unreacted substrate using Bio-Spin P-30 Tris desalting
columns (Bio-Rad). Lipids were removed by chloroform extraction using 5PRIME
Phase Lock Gel light tubes (Quanta bio) followed by ethanol precipitation. RNA

pellets were dissolved in phosphate-buffered saline (PBS) buffer (pH = 7.5). The
RNA concentration of each sample was quantified by Qubit 3.0 Fluorometer
(Thermo Fisher Scientific). To isolate the reacted RNA, streptavidin Magne-
Sphere paramagnetic beads (Promega) were added to all reacted RNA samples
(20-ng RNA for each sample from the dissolved reacted RNA stock solutions)
with a volume ratio of 1:1. Samples were incubated for 10 min at room tem-
perature with end-over-end tumbling, followed by three washing steps. The
aminoacylated RNAs were eluted with UltraPure diethyl pyrocarbonate–treated
water (Invitrogen) incubation at 70 °C for 2 min as previously described (101).
The amounts of aminoacylated RNAs were quantified using iTaq SYBR green
mix (#1725150, Bio-Rad) using Bio-Rad CFX96 Touch system. The samples were
prepared following the manufacturer’s protocol. Samples of 2 μL were mixed in
the total 10-μL RT-qPCR reaction volume with 500 nM of both forward and
reverse primers. The forward and reverse primers sequence were 5′-GATAAT
ACGACTCACTATAGGGAATGGATCCACATCTACGA-3′ and 5′-CAGCTTCGTCAA
GTCTGCAGTGAA-3′, respectively. A calibration standard curve was measured
for each RT-qPCR measurement batch to reduce measurement error. The
standard RNA sequence was 5′-GGGAAUGGAUCCACAUCUACGAAUUCAAAA
ACAAAAACAAAAACAAANUUCACUGCAGACUUGACGAAGCUG-3′ which has
the same length (i.e., 71 base pairs) and primer-complementary regions as the
ribozymes used in this study. The standard curve was determined by adding
2 μL standard RNA samples with the concentrations of 1,000, 100, 10, 1, and 0.1
pg/μL (SI Appendix, Fig. S12). Triplicates were performed for each sample.

For the gel shift assay, samples were incubated with the BYO substrate for
90 min at various concentrations of BYO (0, 10, 50, 100, 250, 500, and 1,000
μM) in the aminoacylation buffer. After desalting, samples were incubated
with 2 μM streptavidin for 15 min in 10 mM Tris (pH = 7.0) and then analyzed
by native PAGE. Gels were stained by SYBR Gold (Invitrogen) and imaged on
an Amersham Typhoon 5 Biomolecular Imager (GE Healthcare Life Sciences).

Dynamic Light Scattering of Vesicles. Vesicle stability was examined by incu-
bating the extruded vesicle solution under different experimental conditions.
Samples were placed at room temperature for 120 min before measurements.
Dynamic light scattering measurements were performed using the Zetasizer
NanoZSP (Malvern Instruments) at roomtemperature. Photonswere collected at
173° scattering angle, and the scattering intensity data were processed using
the instrumental software to determine the hydrodynamic size of the vesicles of
different samples. Triplicate measurements were performed.

Preparation of RNA Libraries. Chemical synthesis was used to obtain a library of
DNA molecules having the sequence 5′-GATAATACGACTCACTATAGGGAAT
GGATCCACATCTACGAATTC-N21-TTCACTGCAGACTTGACGAAGCTG-3′, where
the nucleotides upstream of the transcription start site for T7 RNA polymerase
are underlined and N21 denotes 21 consecutive nucleotides, which are varied
for different ribozyme families in preparing the ’doped pool’ RNA. The se-
quences of the N21 region for five different ribozyme families are: CTACTTCAA-
ACAATCGGTCTG (S1a), CCACACTTCAAGCAATCGGTC (S1b), ATTACCCTGGTC-
ATCGAGTGA (S2a), ATTCACCTAGGTCATCGGGTG (S2b), and AAGTTTGCTAAT-
AGTCGCAAG (S3). Randomness of 9% (i.e., 91% for the peak center nucleotide
and 3% for each other nucleotide) in the N21 region was introduced during the
DNA library synthesis. The theoretical fraction for the peak center, single mu-
tants, double mutants, triple mutants, and other mutants for each of the syn-
thesized DNA libraries is ∼14, 29, 28, 18, and 10%, respectively. Due to the
limitation of sequencing depth, the sequencing results presented in this study
covered the peak centers, all single and double mutants, and a fraction of the
triple mutants. The doped pool RNA was prepared by mixing equal amounts of
the five transcribed and purified RNA libraries.

For the DNA library of the selection pool, the N21 region was entirely
random (i.e., 25% of each nucleotide). RNAs were transcribed using HiScribe
T7 polymerase (New England Biolabs) and purified by denaturing PAGE
(National Diagnostics). For the selection pool, 6 μg of double-stranded DNA
(∼323 pmol) was used for the RNA transcription reaction to ensure high
(∼45-fold) coverage of sequence space for N21.

k-Seq of the RNA Libraries. The previously used k-Seq assay (53) was carried
out for the doped pool RNA library in the InV) and OutV conditions, with
modifications described below required due to sample properties in the
presence of vesicles. k-Seq is a massively parallel assay for measuring ribo-
zyme kinetics using HTS, similar to HTS-Kin and related methods (46, 56,
102–105). InV and OutV samples were incubated for 90 min with various
BYO substrate concentrations (10, 50, 100, 250, 500, and 1,000 μM) in the
aminoacylation buffer. Samples were then treated as described in the RT-
qPCR assay. Notably, a sample with no BYO was prepared and served as an
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input control in the following analysis. The input control was separately
prepared without the beads incubation to characterize the initial population
of each sequence in the doped RNA pool. The cycle quantification value
(i.e., Cq) of each k-Seq sample was determined by the CFX Manager Software
(Bio-Rad) using the built-in regression method. The aminoacylated RNAs
were reverse transcribed and then amplified by PCR with the cycle number
determined by the RT-qPCR measurements. In general, Cq + 1 cycle was used
for the PCR. The DNA library of each sample was then barcoded and pooled
for sequencing by the Illumina NextSEq 500 (Biological Nanostructures
Laboratory, California NanoSystems Institute at University of California,
Santa Barbara).

The raw, paired-end, demultiplexed Illumina read files (i.e., FASTQ files)
of all k-Seq samples were processed with the EasyDIVER pipeline to create
count files containing dereplicated lists of the central variable region se-
quences and their count reads (106). Every unique sequence detected in the
count file of the input sample was tracked across all k-Seq samples. The
concentration of sequence s of the k-Seq sample (samples denoted as BYOi,
where i specifies the BYO concentration) was calculated as

(nBYOi
s =nBYOi

total )*[total]BYOi , where the superscript denotes the sample, nBYOi
s

and nBYOi
total are the number of reads of sequence s and the total number of

reads, respectively, in sample BYOi, and [total]BYOi is the total RNA concen-
tration of sample BYOi, determined by the RT-qPCR results. Results were fit
to the pseudo-first-order rate equation Fs([BYO]) = As(1 − e−ks[BYO]t), where

Fs =
(nBYOi

s /nBYOi
total ) * [total]BYOi

(ninput
s /ninput

total )* [total]input
,

where As is the maximum reacted fraction, t is the incubation time of 90 min,
and ks is the effective rate constant of the aminoacylation reaction catalyzed
by sequence s. The two fitting parameters As and ks are poorly estimated
individually for low-activity sequences (c.a., ks < 0.5 min−1 · M−1), but due to
the inverse correlation between estimated As and ks during curve fitting, the
product of the estimated ks and estimated As is more accurate (56). There-
fore, the product of the two estimated parameters, ksAs, from the
pseudo-first-order curve fitting was used to represent the catalytic activity of
all ribozymes in the present study. To minimize the contribution of se-
quencing error, an empirical threshold was applied such that only sequences
having >10 reads on average across k-Seq samples were included in the
analysis. To estimate the experimental error, bootstrapping analysis was
conducted using the k-Seq data (56). The bootstrap analysis was conducted
by iterating the fitting process 2,000 times, with each resample generated by
randomly picking 21 data points from the original data set (i.e., triplicates
for seven different [BYO]). Hence, 2,000 sets of best-fit parameters from the
bootstrap analysis of each analyzable sequence were obtained. The 95% CI
of the bootstrap results was defined by the range between the 97.5 per-
centile and the 2.5 percentile. In this study, the estimated ksAs value is the
median (i.e., 50 percentile) among bootstrap samples. The source code for
the k-Seq data analysis were written in MATLAB (MathWorks Inc.) The raw
HTS data and source code are available at Dryad (https://doi.org/10.5068/
D1PX0K).

In Vitro Ribozyme Selection in the Encapsulated and Nonencapsulated Conditions.
For both InV andOutV selections, 200-μg RNAs (coverage of N21 sequence space
∼500-fold) were applied in the first round. For the InV selection, the RNA-
containing vesicles were purified as described above. For the OutV selection,
RNAs were externally added to the vesicle solution without encapsulation. The
RNA-containing solutions were incubated with 50-μM BYO substrate in the
aminoacylation buffer for 90 min. After the reaction, samples were desalted,
chloroform extracted, ethanol precipitated, and then resuspended in PBS
buffer. The aminoacylated RNAs were selected by adding streptavidin beads at
a volume ratio of 1:4 (RNA solution: bead-containing slurry) and then were
eluted after 10 min incubation time. Sequences were prepared for the next
round of selection by RT-PCR. The amount of aminoacylated RNAs recovered
from the streptavidin beads increased after each round of selection; hence the
number of PCR cycles was reduced accordingly to prevent PCR artifacts. The
selection process was ended when the number of PCR cycles necessary was
reduced to four. Four and five rounds of the selection process were performed
in the InV and OutV conditions, respectively. The selected DNA libraries were
barcoded and pooled for sequencing by Illumina NextSEq 500 (Biological
Nanostructures Laboratory, California NanoSystems Institute at UCSB).

First, we examined whether any novel ribozyme families arose in either
selection condition. The HTS result of each selection pool was analyzed by
EasyDIVER pipeline (106) to create dereplicated lists of the central variable

region sequences and their count reads. The sequences on the list were
clustered into a peak if the sequences were within a Hamming distance
of ≤3 from the known family wild types (S1a, S1b, S2a, S2b, and S3). Both
selected RNA pools were found to be >85% populated by the three known
active Motifs, and no new Motifs could be identified in either pool after
clustering similar sequences (SI Appendix, Fig. S13).

Estimating Mutational Effects on Ribozymes. A multilinear regression model
was introduced to assess the mutational effect of a particularmutation i at locus
j in the central 21-nt region of a peak center sequence (p). The log-scale ac-
tivities of mutants were defined as a vector Y = [yi,j] = [ln(ki,jAi,j)]. The se-

quence of each modeled mutant (pi,j) was represented by Χ i,j, which is a binary
vector encoding all possible mutations of p. The multilinear model was con-

structed for predicting the activity of mutant as ŷi,j = y0 + β i,j ·Χ i,j, where ŷi,j is

the modeled activity of mutants, y0 is the activity of the wild-type family center
(y0= ln(k0A0)), β i,j is a vector which represents the modeled mutational effects

of all possible mutations, [βi,j] (63 elements in this study). Then, we can obtain

the simulated activity of all mutants Ŷ = [ŷi,j]. The regression analysis was

performed by minimizing the least-squares error between Y and Ŷ. Note that
only single and double mutants were included in the modeling, and the model
does not account for the contribution of epistasis.

k-Seqlogo Analysis. The Seqlogo illustration is a graphical representation for
depicting the information content of a sequence, representing the consensus
sequence region and the diversity of a collection of aligned sequencing re-
sults (107). By adapting the k-Seq results and the multilinear regression
analysis into the Seqlogo representation, we illustrated the information
content relevant to activity measurements obtained from the k-Seq assay
(which we termed a “k-Seqlogo” representation). The basis of this illustra-
tion is the supposition that each sequence in a family should be represented
at a level that is related to its activity. From the above multilinear regression
model, we approximate the Arrhenius activation energy change caused by a
particular mutation i at locus j as

ΔEi,j = −kBT0(ŷi,j − y0) = −kBT0(βi,j),
where βi,j is the modeled mutational effect on the activity of mutation i at
locus j, kB is the Boltzmann constant, and T0 is the reaction temperature. If i
is the peak center nucleotide, βi,j = 0. Note the approximation that rate

constant ks = CksAs for constant C. A partition function of locus j (Zj) can be
computed as

Zj = ∑
i=A,U,C,G

e(βi,j).

This theoretically constructed ensemble would include each sequence at a
relative frequency that depends exponentially on the activation energy, in
analogy to an ensemble of conformations having different energy levels. The
Shannon entropy of locus j (Hj) within this theoretical ensemble can be
calculated as

Hj = − ∑
i=A,U,C,G

fi,j * log2(fi,j),

where fi,j = e(βi,j )=Zj. Therefore, the information content (R), measured in
bits, of each locus can be derived as Rj = log2(4) − Hj. The height of each
nucleotide letter in the logo is calculated as Rj*fi,j. Therefore, k-Seqlogo illus-

trates the importance of the different nucleotides at each position by consid-
ering its effect on changing the activation energy of the ribozyme reaction.

Pairwise Epistasis Calculation. Pairwise epistasis (e) was calculated as
«a,b = ln(kAa,b*kA0=(kAa*kAb)), where kAa and kAb are the activity of RNA

variants with a single mutation, kAa,b is the activity of the RNA variant with
both a and b mutations, and kA0 is the activity of the wild-type family
center. Positive values of «a,b indicate synergistic interactions (i.e., the double
mutant is more fit than expected), while negative values indicate antago-
nistic interactions (i.e., the double mutant is less fit than expected). Each
epistatic interaction was further categorized into one of three categories:
magnitude epistasis, sign epistasis, and reciprocal sign epistasis (SI Appendix,
Table S4 and Fig. S14). Magnitude epistasis is defined as a double-mutant
activity aligned in direction with the expected linear combination of single
mutants but differing in magnitude. Sign epistasis occurs when one
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mutation has the opposite effect on fitness in the presence of another
mutation. Reciprocal sign epistasis is an extreme case of sign epistasis in
which separately advantageous mutations became unfavorable when both
are present.

Calculation of Ruggedness of the Chemical Activity Landscape. The ruggedness
(γd) of the chemical activity landscape was quantitatively estimated as pre-
viously described (53). γd is defined as the correlation of the effect of a
certain mutation at locus j in sequence s, Δj(s), and the effect of the same
mutation in a d mutant background, Δj(s[i1, i2 ...id ]), averaged over all possible
sequences s, variants i, and loci j (108, 109). The parameter d is the Hamming
distance (i.e., the minimum number of substitutions) between two related
sequences.

γd = ∑s∑i1∑i2>i1 . . .∑id>id−1∑j≠i1, i2 ...idΔj(s) ·Δj(s[i1 , i2 ...id ])
∑s∑i1∑i2>i1 . . .∑id>id−1∑j≠i1, i2 ...id(Δj(s))2 .

The effect of a mutation at locus j is measured as the change in (log scale)
activity of sequence s, as Δj(s) = ln(ks[j]As[j] ) − ln(ksAs). For each pair of se-
quences having a certain mutation at locus j, we identify all possible d mutant
backgrounds by finding every other pair of sequences in the pool with the same
mutation. γd is defined as a correlation and is bounded by −1≤ γd ≤ 1. γd = 1
corresponds to a perfectly smooth peak. γd = 0 corresponds to a highly rugged,

completely uncorrelated peak. γd = −1 corresponds to a maximally rugged,
anticorrelated peak.

The average γd for the rugged NK model (47, 64, 65) can be calculated as

γNKd =
(N − d − 1

K
)

(N − 1
K

)
, where N is the number of total loci and K is the number

of interacting loci. Larger K indicates a more-rugged fitness landscape. K = 0
corresponds to an additive model with independent contributions from each
gene, while K = N − 1 corresponds to the fully random, uncorrelated fitness
landscape (i.e., house-of-cards model).

Data Availability. Sequencing data and source code data have been deposited
in Dryad Digital Repository (https://doi.org/10.5068/D1PX0K) (110).
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